Automatic Dataset Generation From CAD for Vision-Based Grasping

Saad Ahmad®f, Kulunu Samarawickrama®:T, Esa Rahtu? and Roel Pieters!

Abstract— Recent developments in robotics and deep learning
enable the training of models for a wide variety of tasks, from
large amounts of collected data. Visual and robotic tasks, such
as pose estimation or grasping, are trained from image data
(RGB-D) or point clouds that need to be representative for
the actual objects, to acquire accurate and robust results. This
implies either generalized object models or large datasets that
include all object and environment variability, for training.
However, data collection is often a bottleneck in the fast
development of learning-based models. In fact, data collection
might be impossible or even undesirable, as physical objects
are unavailable or the physical recording of data is too time-
consuming and expensive. For example, when building a data
recording setup with cameras and robotic hardware. CAD tools,
in combination with robot simulation, offer a solution for the
generation of training data that can be easily automated and
that can be just as realistic as real world data. In this work,
we propose a data generation pipeline that takes as input
a CAD model of an object and automatically generates the
required training data for object pose estimation and object
grasp detection. The object data generated are: RGB and
depth image, object binary mask, class label and ground truth
pose in camera- and world frame. We demonstrate the dataset
generation of several sets of industrial object assemblies and
evaluate the trained models on state of the art pose estimation
and grasp detection approaches. Code and video are available
at: https://github.com/KulunuOS/gazebo _dataset_generation

I. INTRODUCTION

Grasping and manipulation of objects by a robot manip-
ulator is a common task, often executed without external
sensors, such as cameras. Industrial processes, for example,
can be designed in such way that recurring objects are always
at the same location, where fixtures provide the support
for grasping and following handling steps [1]. Variability,
however, is a rising trend in agile production with recon-
figuration and flexibility of the work cell a requirement.
Computer vision can offer solutions for detecting objects
and suitable grasp locations, on the condition that objects
are known or similar to previously seen objects [2]. Deep
learning approaches [3] utilize vasts amount of data to train
a detection model, assuming that such data is representative
for the actual task. In case data is unavailable, incorrect or
difficult to obtain, a different solution has to be found. In
addition, from an industrial perspective, objects might only
be available physically and generating the required training
data requires skilled and time-consuming preparation.

The automatic generation of training data, in the form
of RGB-D images, object binary masks and ground truth

1Unit of Automation Technology and Mechanical Engineering, 2Unit of
Computing Sciences, Tampere University, 33720, Tampere, Finland; Thoth
authors contributed equally, firstname.surname@tuni.fi

Fig. 1: Simulated objects (colored) and cameras (blue) to au-
tomatically generate an object dataset (RGB-D, object binary
masks and ground truth poses) for vision-based grasping.

poses is therefore of value, especially through Computer-
Aided Design (CAD) and simulation (see Fig. [T). This paper
describes these exact developments, for the robotic task
of grasping. In particular, we propose a dataset generation
pipeline that utilizes CAD models and standard open source
software modules to generate the required training data.
We demonstrate the data generation pipeline by three
industrial assemblies. Each assembly has several parts and is
designed in CAD or selected from open source CAD reposi-
tories (see Table[l). The pipeline simulates the assemblies and
a camera to generate RGB-D images, object binary masks,
labels and ground truth poses. Evaluation of the datasets on
a pose estimation model and grasp detection model verifies
that the training data is suitable for vision-based grasping.
Summarizing, the contributions of this work are:

« Automatic object dataset generation pipeline from CAD
« Simulation of objects and RGB-D camera in Gazebo
e Variation in parameters (e.g., yaw, pitch, scale, resolu-
tion) captures dataset variability
e Object binary masks and labels obtained via depth
information
The paper is organized as follows. We introduce the paper
in Section[l] A brief overview of the current developments in
grasp detection and existing datasets is given in Section [[I]
which describes the state of the art and their limitations. The
proposed automatic dataset generation pipeline is described
in Section [and its results are explained in Section [[V]
Section [V] concludes the work.

https://github.com/KulunuOS/gazebo_dataset_generation

TABLE I: Overview of CAD Model datasets. ShapeNetCore and ShapeNetSem are a subset of ShapeNet. Most datasets
listed cover a wide variety of categories. The abbreviations in the License column denote: C; the copyright of the CAD
models is owned by their creators, P; Proprietary, NC; Non-commercial use, OS; open-source.

Categories

Data

Dataset (year) Parts Parametric License
(number) source

ABC [4] (2019) 1,000,000+ | - v Onshape [5] C

Fusion360 Gallery [6] (2020) | 8,625 - v Autodesk Online Gallery [7] P
Mechanical TraceParts [9]

MCB [8] (2020) 58,696 components - 3D Warehouse [10] -
(68) GrabCAD [11]

ShapeNet [12] (2015) 3,000,000+ | (3,135)

ShapeNetCore 51,300 (55) - 3D Warehouse [10] NC

ShapeNetSem 12,000 (270)

Thingi10K [13] (2016) 10,000 3D printing models - Thingiverse [14] oS

II. RELATED WORK

A. Grasp detection

Object grasp detection is a popular topic in robotics and
can be divided in several categories to differentiate between
approaches and their assumptions. For example, the represen-
tation of a grasp is an important consideration and determines
the complexity of the problem and its application [15]. When
considering only a planar grasp pose representation, grasp
detection is simplified to finding the object and its orientation
on a planar surface, typically represented as an (oriented)
bounding box. On the other hand, in case a complete 3D
pose of the object is required for grasping, detection should
return the full 3D position and 3D orientation of the object.
In context of learning-based grasp detection [3], typical data-
driven approaches [16] differentiate between the utilization
of RGB, depth (in form of point clouds) [17], [18] or a
combination of both (RGB-D) [19]. In addition, objects to
be grasped can be known, similar (i.e., different instance
of a known category) or novel, which should be considered
when deciding (or developing) on the data representation,
collection and training approach. A comprehensive survey of
approaches is presented in [2]. In particular, PVN3D [19] is
a recent, deep point-wise 3D keypoints-based voting network
for 6-DOF pose estimation and utilizes single RGB-D images
for inference. 6-DOF GraspNet [18], on the other hand,
generates grasps directly as output of the network, from 3D
point clouds observed by a depth camera.

B. Existing datasets

Existing datasets for 2D object detection, such as COCO
[20] and Objectron [21] for 3D objects, are widely available,
including common objects that are present in everyday
scenes. Similarly, most of the recent and state of the art
approaches in grasp detection utilize datasets with large
variation in objects, thereby aiming to capture as much object
geometries as possible. This inevitable leads to large datasets
(gigabytes), long training times and heavy detection models
[22], [23]. Alternative approaches are considered as well,
with object models that cover a statistically large variety in
geometry [24].

One additional differentiation between datasets and their
generation is whether the collected data is from real [25],
[26], [17] or simulated [27], [28], [29] objects. While real
objects offer more realistic data to be captured, adding more
object models and expanding the dataset is difficult when
considering the utilized hardware for data similarity. In ad-
dition, most of the datasets only include common household
objects, as these are freely available. Industrial parts, on
the other hand, are not easy to obtain and too specific to
generalize. One exception is the work in [28], which includes
only industrial parts (gears, screws, brackets, etc.), obtained
from an online CAD repository. Simulated or synthetically
generated datasets have been considered as well, however,
again focused mainly on household objects [27], [29] and
are typically not integrated in a robotics simulator.

Even though most works provide their data and models
openly available, reusing them is not an easy task. Different
data formats, suitability of models and selecting a subset
is not always possible or easy. This can be seen in Table
which gives a brief overview of CAD model datasets.
The most well-known CAD dataset, ShapeNet [12], provides
the largest set of CAD models, is carefully categorized and
models can be browsed and queried from its hosting website.
The ABC [4] and Fusion360 Gallery [6] CAD datasets
offer CAD models that are parametric, therefore focusing
on the changing of models and their appearance, either by
parametrized curves and surfaces [4], or by primitive oper-
ations [6]. Finally, the Mechanical Components Benchmark
[8] and ThingilOK [13] offer datasets with mechanical and
industrial parts, sourced from professional CAD repositories
or from open source 3D printing website Thingiverse [14].
Due to these differences, licensing has to be carefully con-
sidered, as in some cases commercial use is prohibited.

The main observation to motivate our work is that collect-
ing or generating training data for industrial parts is a tedious,
time-consuming and costly task. Even though plenty datasets
can found, each are limited (to some extend) to the objects
they contain. Instead, we propose an automated pipeline that
generates a dataset from CAD models and is integrated in a
robotics simulator (Gazebo), where the variability and size
of the dataset is controllable by different parameters.

III. AUTOMATIC DATASET GENERATION
A. Data capturing

Automatic data collection, as described in Algorithm m
utilizes only simulation to generate a dataset, where different
parameters are varied to recreate appropriately broad con-
ditions as would be expected in a real use case. Different
settings in the simulator influence the data generation, such
as camera and image parameters (e.g., resolution, focal
length, opening angle, etc.), environment conditions (e.g.,
lighting and background) and object properties (e.g., texture).
A moderately dense clutter of all the objects in the dataset
is created through CAD and loaded as mesh in the Gazebo
simulation environment. Then, a 3D point cloud of each
object is generated by sampling 3000 points from each object
mesh and saving each as point cloud. This is required for
generating the object binary masks, i.e., projection from 3D
point cloud objects to 2D binary masks, and represented by
function CAD2PCLY() in Algorithm [1}

Hemisphere-sampling, as described in [25], is then carried
out around the object-set origin and with the simulated
camera’s principle-axis pointing towards it (see Fig. [T). The
camera pose is then varied with steps in:

« yaw increments, ¢ = {0,...,360} in degrees,
o pitch increments, § = {0,...,90} in degrees,
« hemisphere radius increments, s = {0, ..., 3} in meters.

The dataset then records the following data:

« RGB image Irgp

o Depth image Ip

o Object binary mask I,

« Encoded object class labels

o Ground truth object pose in camera- and world frame,

Tg , Tg/ (4 x 4 homogeneous transformation matrices)

Object binary masks are represented as a grey-scale image
I,y with the mask of each object in a different grey-scale
value, such that they can be independently extracted. This is
computed in Algorithm [1| by GenerateMask(/p) as follows.
First, as described earlier, a point cloud depth image Ip is
projected onto the image plane and clipped to the correct
simulated camera resolution. Gaps in the projected image
are filled with a flood fill operation. Then, each projected
point is mapped to a unique grey label and subsequently
classified into a set, with size the number of objects in the
scene. This leads to each projected object having a unique
grey-scale value, representing the binary mask of the object.

B. Evaluation

The suitability of the generated datasets is evaluated by
two state of the art models; PVN3D [19] for pose estimation
and 6-DOF GraspNet [18] for grasp detection. PVN3D is
a deep point-wise 3D keypoint voting network that takes
both RGB and depth images as input. It consists of separate
blocks for feature extraction, 3D keypoint detection, instance
semantic segmentation and 6-DOF object pose estimation.
A joint multi-task training is carried out for 3D keypoint
detection and instance semantic segmentation blocks, and
training utilizes the complete generated dataset as described

Algorithm 1: Automatic dataset generation

Parameters:
¢: yaw angle of the camera
0: pitch angle of the camera
s: scale of the camera

Input : CAD model of object assembly
Output : Ipgp,Ip, Iy, labels, TS
Functions : CAD2PCL()

GenerateMask()
Load CAD models in Gazebo
Set correct scale of the objects
Set simulation parameters
CAD2PCL(); (Convert CAD models to point cloud)
foreach ¢ do
foreach 6 do

foreach s do
Record Igrap

Record Ip
Record I,; < GenerateMask(/p)
Record labels
Record TS = (T¥) ™' T
end

end

end

in this work. 6-DOF GraspNet, on the other hand, has trained
a grasping model by physics simulation on objects extracted
from ShapeNet [12] and only takes point cloud images as
input. Evaluation with 6-DOF GraspNet therefore serves to
demonstrate that the object dataset can also be utilized for
only grasp detection evaluation.

For evaluating object pose estimation, we utilize two
widely used metrics: Average Distance of Model Points
(ADD) and Average Closest Point Distance (ADD-S). ADD
computes the average distance between two points using the
ground-truth pose and the estimated pose. ADD-S computes
the mean distance from a model point by the estimated
pose to its closest neighbor on the target 3D model point
transformed by the ground truth pose. Therefore, the ADD-
S metric can solve the ambiguous problem of symmetrical
objects. Evaluation of the grasp detection network is done
by assessment of the generated grasps and their suitability.

C. Implementation

Gazebo was selected for the simulation environment, as
it’s a common tool in robotics research and provides fine-
tuning of a variety of parameters, e.g., gravity, mass, friction,
inertia and lighting (ambient, diffuse, directional, spot, etc.).
This provides a good testing-ground for a complete robotic
grasp and manipulation pipeline. A Kinect vl camera is
simulated in Gazebo which publishes color images, depth
images and camera intrinsics for both over ROS. All objects
are simulated using their standard polygon mesh files con-
verted from CAD models, by Open3D [30]. Only ambient
and diffuse lighting (i.e., no directional or spot light) is used

with a fixed color for each object. The background is set to a
brightly-lit plain-gray room with no walls and objects always
rest on the floor in their most stable equilibrium pose. For
the sake of simplicity, no dense background clutter or non-
dataset objects are added to the environment. However, these
properties can be changed by altering the particular settings.

IV. RESULTS

Results are reported towards dataset generation and its use
to train the pose estimation and grasp detection models.

A. Dataset generation

CAD models of objects, as loaded in Gazebo, can be
organized in different arrangements, as shown in Fig. 2] This
depicts identical objects with different orientations and object
sets in different configurations. Such setup can be utilized for
the generation of training data and for the evaluation of the
learned detection models. For the evaluation of the complete
data generation pipeline, three different industrially-relevant
object assemblies are selected, which are shown in Fig. [3
Assemblies comprise of Diesel engine parts, sourced from a
local Diesel engine manufacturer (Fig. 3a) and an assembly
benchmark set (Fig. [3a), which is designed by hand, a slider-
crank mechanism (Fig. [3b), which is designed by hand and
a planetary gearbox (Fig. [3c), sourced from the open source
3D printing repository Thingiverse [14]. Datasets are then
generated as follows.

The parameters of the simulated camera are taken from
the standard implementation of Kinect vl in Gazebo, i.e.,
RGB-D resolution of 640 x 480. The steps in sampling are:

o 10° yaw increments, ¢ = {0, 10,...,360},

 10° pitch increments, 6 = {0, 10,...,90},

e 0.1m hemisphere radius scale increments,

s ={0.65,0.75,...,1.45}.

This procedure generates a total of 3000+ data samples
(total number of yaw, pitch and scale configurations), where
one sample includes the RGB and depth images, binary
object masks, object labels and poses. Examples of this data
can be seen in Fig. 3] This dataset has an approximate size of
200 MB, which is irrespective of the number of objects in the
set. Dataset generation is implemented on a standard laptop
with 17-9850H processor and quadro T1000 GPU, running
Ubuntu 16.04 and ROS Kinetic, and takes around 2 hours
for 3000+ samples (~0.25 seconds per object).

B. Pose estimation results

With a total of 3000+ collected data samples, a 75%-
25% train-test split was used where every 4-th sample is
used as a test sample, in order to evenly cover all possible
pitches, yaws and scales in both test and training dataset.
Input image size for training is 640 by 480 pixels and a
total 12288 points are randomly sampled for PointNet++
feature extraction [31]. Only these points are further used
for semantic labeling and keypoint-offset voting, which is an
optimal number originally recommended and tested by the
authors. If the number of points in the pointcloud are less

than this number, the pointcloud is recursively wrap-padded
around its edges until is has at least 12288 points.

For each object mesh, greedy farthest-point-sampling is
used to sample keypoints that spread-out at a furthest pos-
sible distances from each other on the mesh surface. Two
different versions i.e., 8 and 16 keypoints, are used for
training two separate network checkpoints with a total of 25
epochs and batch size of 24, as recommended by the authors.
Training of the pose estimation model [19] was carried out on
4 Nvidia V100 GPUs with 32 GB of memory simultaneously
and takes around 2-3 hours for the given batch-size, number
of epochs and training dataset.

Fig. [] depicts the pose estimation results for the three
object sets, where individual objects are overlaid with their
estimated pose, represented by projected bounding boxes
(light-blue). In addition, the accuracy of pose estimation is
reported in terms of area under accuracy-threshold curve
where the threshold for both ADD and ADD-S metric is
set as 10% of object diameter. These results are reported in
Table [II} for a selection of parts. These results demonstrate
that a highly accurate pose estimation model can be trained
with our proposed dataset generation pipeline.

C. Grasp detection results

Grasp detection is evaluated on the generated dataset by
the originally trained model [18]. As can be seen in Fig. [5
a large number of grasps are generated, which are ordered
from red to green (i.e., worst to best), based on the authors’
grasp quality metric [18]. Filtering of the generated grasp
candidates, by removing impossible or unsuitable grasps, is
still required to select a most suitable grasp. For example,
from the faceplate (left most object in Fig. [5h), few grasps
are generated, and all are unsuitable (red color) as grasping
would require moving through the ground plane on which the
object is placed. The Diesel engine piston (Fig. [Sk) on the
other hand, generates many suitable grasps (green color) due
to its round shape. Nevertheless, these results demonstrate
that the generated data is suitable for inference evaluation
by a state of the art grasp detection model.

D. Discussion

The results in this work are only demonstrated in simu-
lation and the object datasets are generated without object
variations such as color and texture, environmental condi-
tions such as lighting and background, and no noise was
added to the simulated camera images. These variations are
possible to be included and, naturally, would increase the
size and generation time of the dataset, as well as the time
to train a detection model. In addition, the dataset is limited
with respect to the placement, pose and clutter of the objects
on a flat surface. Only a single object pose is included, which
might not necessarily be the pose that the object has, in a real
situation, and objects might be in a more dense clutter than
is trained on. Such wider variety of training data, again, can
be included, yet leads to an increase in data size and training
time.

Fig. 2: Samples of objects simulated in Gazebo, in different arrangements and configurations, for the generation of training
data and for evaluation of the pose estimation and grasp estimation models.

(2

Fig. 3: Results of the automatic data generation pipeline. Objects in the left column (a, d and g) represent parts from a Diesel
engine and assembly benchmark. Objects in the middle column (b, e and h) represent parts from a slider-crank mechanism.
Objects in the right column (d, f and i) represent parts from a planetary gearbox. Top row (a, b and c) depicts RGB images.
Middle row (d, e and f) depicts depth images. Bottom row (g, h and i) depicts object binary masks.

(a) (b) ()

Fig. 4: Results of object pose estimation with the PVN3D [19] network, trained with the complete generated datasets, as
proposed in this work. Individual objects are overlaid with their estimated pose, represented by projected bounding boxes
(light-blue), demonstrating that a highly accurate pose estimation model is trained from the dataset.

(a) (b) (c)

Fig. 5: Results of object grasp detection with the 6-DOF GraspNet [18] network, in which grasps are ordered red to green
(i.e., worst to best), based on the authors’ grasp quality metric. Filtering of the generated grasps candidates is still required
to select a most suitable grasp. These results are presented to demonstrate that the generated dataset can also be used for

grasp detection evaluation. Parts are from an assembly benchmark (a) and (b), and a piston from a Diesel engine (c).

Practical considerations that should be taken into account
when adopting this framework are as follows. The scale
at which an object is loaded into the Gazebo simulation
environment should be checked carefully for each object.
If the correct size of an object is not utilized or included,
the simulated camera will not observe the objects at the
correct scale. This results in objects too big or too small for
the camera, or objects that are not visible (outside the field
of view). This recommendation also holds for the position
of objects, which should be centered at the origin of the
simulation world individually or as an object set.

Extension to other domains, such as physics-based
simulation to train an object grasping model (e.g., by deep
reinforcement learning), could be considered as well, as
parts of the data generation pipeline could be utilized as
input for the modelling of objects. Besides object shape,
additional properties, such as object texture, mass or friction,
or even environment conditions and different gripper and
their parameters could be varied in the dataset and in the
training framework.

The proposed data generation pipeline offers a structured
way to control which object should be included or excluded
in a dataset. This is possible by loading individual CAD
object models sequentially and arranging them in a suitable
configuration, or by loading a CAD object model set at once.
This implies that such CAD models need to be available
or designed beforehand, to be included (e.g., provided by
companies, extracted from existing datasets or repositories;
see Table [). Besides manual human effort, object model
variations can also be integrated automatically. Most CAD
programs offer some form of automated or parametric design
via their API or internally by scripting, thereby enabling
CAD design to be integrated in the automated data generation
pipeline. For example, open source CAD design tools such
as FreeCAD [32], provide a scripting interface for Python
and OpenSCAD [33] enables scripting solid 3D CAD models
without any interactive modelling interface. Geometric varia-
tions of the object itself, as is the case for standardized parts
such as gears, can thus be automatically included without
manually altering individual CAD files. Future work will
explore this further.

TABLE II: Area under curve (AUC) for accuracy-threshold curve for the ADD and ADD-s metric on a selection of objects.
These results show that the generated datasets are suitable for training the pose estimation model PVN3D [19].

ke
i3 - = & &
~)
§° éo g g 5 2 § P 5 5& 5
5 = S = 3 g) 3 < g
= T ::é’ S E; g - 2 o g g IS L §
g | & S s | §F | & | § g |5 |2 | § |s 5|5 | £
& & =3 &£ &2 & & & = & Q4 S S S &
ADD
8 keypoints | 97.21 | 97.05 | 96.32 | 9531 | 96.73 | 9595 | 97.41 | 95.88 | 91.58 | 91.4 | 97.45 | 97.55 | 97.33 | 97.04 | 95.16
16 keypoints | 97.76 | 97.35 | 97.12 | 96.09 | 97.27 | 964 | 97.93 | 96.16 | 91.7 | 93.5 | 89.99 | 88.46 | 86.29 | 76.06 | 87.09
ADD-S
8 keypoints | 97.85 | 97.05 | 96.32 | 9531 | 96.73 | 95.95 | 97.41 | 95.88 | 91.58 | 91.4 | 98.12 | 98.13 | 98.39 | 97.04 | 95.16
16 keypoints | 98.16 | 97.35 | 97.12 | 96.09 | 97.27 | 96.4 | 97.93 | 96.16 | 91.7 | 93.5 | 9539 | 94.28 | 94.08 | 76.06 | 87.09

V. CONCLUSION

This work proposed an automatic data collection pipeline
for robotic vision-based tasks such as grasping and pose
estimation. The motivation of this work stems from freely
available datasets that offer a wide variety of objects, yet
are difficult to utilize and expand. Data collection is a
cumbersome and time-consuming task, often limited by
unavailable physical objects. With object CAD models as
input, our pipeline generates data in the form of RGB-D
images, object binary masks, labels and ground truth poses.
Results with three different assemblies, containing varying
parts, demonstrates the utilization of the generated datasets
to train and evaluate a pose estimation and grasp detection
model. The proposed pipeline is implemented in ROS with
Gazebo as simulator and open source available.

ACKNOWLEDGEMENTS

Project funding was received from Helsinki Institute of
Physics’ Technology Programme (project; ROBOT) and
European Union’s Horizon 2020 research and innovation
programme, grant agreement no. 871449 (OpenDR) and no.
871252 (METRICS). The authors wish to acknowledge CSC
- IT Center for Science, Finland, for computational resources.

REFERENCES

[11 P. H. Joshi, Jigs and fixtures. Tata McGraw-Hill Education, 1998.

[2] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping
from object localization, object pose estimation to grasp estimation for
parallel grippers: a review,” Artificial Intelligence Review, vol. 54, p.
1677-1734, 2021.

[3] S. Caldera, A. Rassau, and D. Chai, “Review of deep learning methods
in robotic grasp detection,” Multimodal Technologies and Interaction,
vol. 2, no. 3, p. 57, 2018.

[4] S. Koch et al., “ABC: A big CAD model dataset for geometric
deep learning,” in IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 9601-9611.

[5] Onshape, https://www.onshape.com, accessed on 23.11.2020.

[6] K. D. Willis et al., “Fusion 360 gallery: A dataset and environment
for programmatic CAD reconstruction,” arXiv:2010.02392, 2020.

[7]1 Autodesk Online gallery, https://gallery.autodesk.com/fusion360, ac-
cessed on 23.11.2020.
[8] S. Kim, H.-G. Chi, X. Hu, Q. Huang, and K. Ramani, “A large-scale

annotated mechanical components benchmark for classification and
retrieval tasks with deep neural networks,” in Eur. Conf. on Computer
Vision (ECCV), 2020, pp. 175-191.
[9] Traceparts, https://www.traceparts.com, accessed on 23.11.2020.
[10] 3D Warehouse, https://3dwarehouse.sketchup.com, accessed on
23.11.2020.

[11] GrabCAD, https://grabcad.com, accessed on 23.11.2020.

[12] A. X. Chang et al., “Shapenet: An information-rich 3D model repos-
itory,” arXiv:1512.03012, 2015.
Q. Zhou and A. Jacobson, “ThingilOK: A dataset of 10,000 3D-
printing models,” arXiv:1605.04797, 2016.

Thingiverse, https://www.thingiverse.com, accessed on 23.11.2020.

A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3D
object grasp synthesis algorithms,” Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 326-336, 2012.

J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis - a survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289-309, 2013.

A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose
detection in point clouds,” The International Journal of Robotics
Research, vol. 36, no. 13-14, pp. 1455-1473, 2017.

A. Mousavian, C. Eppner, and D. Fox, “6-DOF graspnet: Variational
grasp generation for object manipulation,” in [EEE Int. Conf. on
Computer Vision (ICCV), 2019, pp. 2901-2910.

Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “PVN3D: A deep
point-wise 3D keypoints voting network for 6DOF pose estimation,”
in IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 11632-11641.

T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Eur. Conf. on Computer Vision (ECCV), 2014, pp. 740-755.

A. Ahmadyan, L. Zhang, J. Wei, A. Ablavatski, and M. Grundmann,
“Objectron: A large scale dataset of object-centric videos in the wild
with pose annotations,” arXiv:2012.09988, 2020.

A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large scale
dataset for robotic grasp detection,” in IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS), 2018, pp. 3511-3516.

C. Eppner, A. Mousavian, and D. Fox, “ACRONYM: A large-scale
grasp dataset based on simulation,” arXiv:2011.09584, 2020.

D. Morrison, P. Corke, and J. Leitner, “EGAD! an evolved grasping
analysis dataset for diversity and reproducibility in robotic manip-
ulation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp.
4368-4375, 2020.

S. Hinterstoisser et al., “Model based training, detection and pose
estimation of texture-less 3D objects in heavily cluttered scenes,” in
Asian Conference on Computer Vision (ACCV), 2012, pp. 548-562.
B. Calli et al., “The YCB object and model set: Towards common
benchmarks for manipulation research,” in IEEE Int. Conf. on Ad-
vanced Robotics (ICAR), 2015, pp. 510-517.

T. To et al., “NDDS: NVIDIA deep learning dataset synthesizer,” 2018,
https://github.com/NVIDIA/Dataset_Synthesizer.

J. Zhao, J. Liang, and O. Kroemer, “Towards precise robotic
grasping by probabilistic post-grasp displacement estimation,”
arXiv:1909.02129, 2019.

M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir,
M. Elbadrawy, A. Lodhi, and H. Katam, “Blenderproc,” 2019.

Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchi-
cal feature learning on point sets in a metric space,” arXiv:1706.02413,
2017.

FreeCAD, https://www.freecad.org/, accessed on 21.01.2020.
OpenSCAD, The Programmers Solid 3D CAD Modeller,
https://www.openscad.org/, accessed on 21.01.2020.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27

(28]

[29]

[30]

[31]

[32]
[33]

https://www.onshape.com
https://gallery.autodesk.com/fusion360
https://www.traceparts.com
https://3dwarehouse.sketchup.com
https://grabcad.com
https://www.thingiverse.com
 https://github.com/NVIDIA/Dataset_Synthesizer

	Introduction
	Related Work
	Grasp detection
	Existing datasets

	Automatic Dataset Generation
	Data capturing
	Evaluation
	Implementation

	Results
	Dataset generation
	Pose estimation results
	Grasp detection results
	Discussion

	CONCLUSION
	References

