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Abstract— We outline our work on evaluating robots that
assist older adults by engaging with them through multiple
modalities that include physical interaction. Our thesis is that
to increase the effectiveness of assistive robots: 1) robots need to
understand and effect multimodal actions, 2) robots should not
only react to the human, they need to take the initiative and lead
the task when it is necessary. We start by briefly introducing
our proposed framework for multimodal interaction and then
describe two different experiments with the actual robots. In the
first experiment, a Baxter robot helps a human find and locate
an object using the Multimodal Interaction Manager (MIM)
framework. In the second experiment, a NAO robot is used in
the same task, however, the roles of the robot and the human
are reversed. We discuss the evaluation methods that were used
in these experiments, including different metrics employed to
characterize the performance of the robot in each case. We
conclude by providing our perspective on the challenges and
opportunities for the evaluation of assistive robots for older
adults in realistic settings.

I. INTRODUCTION

With the world population rapidly aging, assistive robots
promise to ease the societal burden of care for older adults.
The primary focus of care for older adults is on the Activities
of Daily Living (ADLs) so that they can continue to live in-
dependently, but companionship and socio-emotional support
are also important. Increasingly it has been also recognized
that helping caregivers may be as important as helping older
adults directly.

Evaluation is a critical step in the deployment of assistive
robots. Several types of evaluations are typically needed (see
also [1], [2]):

• Functionality: does the technology work as intended?
For example, does a human action recognition module
reach a certain F score?

• Usability: is the user experience while interacting with
the technology satisfactory? For example, can the user
interact with the robot using unrestricted instructions,
or are they limited to a set of keywords?

• Effectiveness: does the technology achieve the stated
goal? For example, do older people using an assistive
robot manage to stay healthier than those that don’t?
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These different types of evaluation increase in complexity,
with usability assessment requiring more complex studies
than functionality assessment, and effectiveness assessment
being significantly more demanding than usability assess-
ment. This is especially true for applications of assistive
robots in elderly care, and healthcare in general, where there
are many challenges with recruiting subjects, the ability of
technology to work in real-life settings, and the length of
time needed to assess the health outcomes.

We focus this paper on our experiences with the eval-
uation of a multimodal interaction manager developed for
assistive robots for older adults. The interactions during
various activities of daily living (ADLs) between the human
and the robot are expected to be inherently multimodal,
such as force exchanges, pointing gestures, haptic-ostensive
(H-O) actions, and speech. This is also confirmed by our
previously collected corpus of human-human interactions
between elderly individuals (elder role: ELD) and nursing
students (helper role: HEL) assisting in ADLs [3]. Motivated
by this, we proposed a Multimodal Interaction Manager
(MIM) [4] that allows an assistive robot to process the actions
of the human, generate appropriate responses, and make
progress toward completing the task. The MIM is described
in detail in Sec. III. The overview of the implementation and
results of our experiments are provided in Sec. IV.

During the interaction, the robot may not be able to
correctly translate speech to language, and determine other
human actions from the readings of the sensors. For instance,
the utterance ”cup” might be misunderstood as ”cop” which
is not an object in the robot’s data and results in the robot not
being able to complete the task. Furthermore, the gestures of
humans, for example pointing to the location, might not be
recognized or the pointing direction may not be determined
correctly.

Even though the robot may correctly interpret human
actions, the robot may fail to correctly respond. For example,
the robot may not have a complete representation of the task
and could fail to determine what an appropriate response is
to a particular human action. In such cases, the robot has to
ask the participant to repeat the action until it finds a match
in the model it uses for planning. The longer this interaction
becomes, the less the user will expect from an assistive
robot. We called these as non-understandings based on the
definition in [5], and thus measuring the rate of unsuccessful
attempts is important for evaluating the robot. More details
about the evaluations and the discussion are in Sec. V and
Sec. VI, respectively.



II. RELATED WORK

As assistive robots get more popular and society tends to
utilize them more,the ground metrics become more critical
for evaluation. Considering various aspects and applications
of different SARs, different evaluation methods should be
employed too.

In [6]–[8], it is shown that the user’s experience could
be refined by adding non-linguistic modalities to robots.
In [6], the implementation is evaluated on the basis of
human participants’ answers to the questionnaire covering
different metrics. In [7], particular metrics are ruled out based
on the human participant’s words and reactions; and the
video recordings of the interaction are analyzed. They also
provide the participants with a questionnaire and evaluate
the interactions they had with the robot based on their
responses to the questionnaire. In [8], the authors evaluate
their approach by implementing it on a robot and measuring
the length of the interaction.

The framework proposed in [6] is evaluated by theoreti-
cally analyzing the underlying model before implementing it
on a robot. In [9], [10], Hierarchical Task Networks (HTNs)
are introduced and evaluated theoretically.

In [11], a middleware system, DiscoRT, is developed and
implemented to improve the performance of virtual and
robotic conversational agents. The system is evaluated by
running experiments on each virtual and robot agent and
investigating the conceptual aspects of the experiments. To
analyze the performance of their Interactive Hierarchical
Task Learning Algorithms, the authors in [12] run simu-
lations where human subjects interact with the simulated
robot environment through their graphical user interface.
They extract and measure some objectives associated with
the task for evaluation. Similarly, in [13] the authors also
run simulations with specific metrics for evaluating their
Hierarchical Distributed Dialogue Architecture.

In [14], the proposed Hierarchical Deep Reinforcement
Learning framework is evaluated by reporting the success
rate, the average number of turns between the user and
the agent, and the reward from the simulation experiments.
In [15], the Distributed Play-based Role Assignment Al-
gorithm is developed and tested by implementing it on
a distributed team of robots for the RoboCup four-legged
league. The task-completion time is used as an evaluation
metric.

In the literature, however, we observe a lack of separate
methodologies for evaluating the theoretical framework and
implementation. In this work, we propose adopting different
evaluation methods for different aspects of ASRs.

III. MULTIMODAL INTERACTION MANAGER
FRAMEWORK

As shown in Fig 1, the Multimodal Interaction Manager
(MIM) consists of three components: (a) the interpretation
module, which interprets multimodal actions of the human
observed by the robot; (b) the mediation module, which
determines the action of the robot in response to the human;
and (c) the execution module, which executes the action

Fig. 1. The architecture for multimodal human-robot interaction. The figure
is taken from [16].

of the robot. The task that was studied in detail in our
work was the Find task, an interaction scenario in which
a human and a robot work together to find an object in
the environment. The core of our framework is Hierarchical
Bipartite Action-Transition Networks (HBATNs) that model
both agents simultaneously to maintain the state of a task-
driven multimodal interaction and plan subsequent robot
moves.

The ELDERLY-AT-HOME corpus [17], a publicly avail-
able corpus of human-human multimodal interactions, in-
volves performing assisted ADLs, such as putting on shoes
and preparing dinner. We developed the framework of
HBATN on a subcorpus consisting of the interactions related
to the Find task. That is, the elderly participant (ELD) would
ask for an object, and the helper (HEL) would try to find it
by asking follow-up questions.

The Find task can be decomposed into a set of subtasks
to identify two main unknowns: the target object (O) and
its location (L). The four main subtasks are determining the
desired object type (Det(OT )), determining a potential loca-
tion to check (Det(L)), opening the location (Open(L)), and
determining the actual object (Det(O)). These are modeled
as Action-Transition Networks (AcTNets).

The AcTNet is a bipartite graph representing the states
of both participants and their possible multimodal actions,
which are defined as vectors consisting of linguistic features
(the dialogue act (DA) [17] of the utterance and object
or location words) and physical features (pointing gestures
or haptic-ostensive (H-O) actions). The HBATN encompass
these AcTNets allowing a robot to not only infer the state
of its partner but also to plan its next action accordingly.

Subsequently, we generalized our model to enable the
robot to be either the ELD or HEL by decomposing the
subtasks into what we call primitive subtasks. In this new
formulation, Det(OT ) and Det(L) establishes the object type
and its location (Estab), potentially followed up by verifi-
cation (Verify) or questions specifying for more information
(Spec), and Det(O) confirms the presence or absence of the
desired object (Finish) in the current location or verify a
physical object with the partner.

Subsequently, a classifier was developed to allow the
robot to determine what is the primitive subtask that the
interaction is currently in. The proposed classifier automati-
cally annotates multimodal interaction data for our primitive
subtasks. This can be used in turn to learn the topologies of



each subtask by extracting sequences of moves belonging
to the same subtask and using well-established techniques
for learning like Markov models. It is implemented on the
MIM to infer the state of the human partner by comparing
the observed human action with all possible actions in the
HBATN with preference given to those in the predicted
subtask. A comprehensive demonstration of the interaction
can be found in [16].

IV. IMPLEMENTATION AND EXPERIMENTS

To test the full MIM depicted in Fig. 1, we implemented
several components in both experiments to recognize and un-
derstand multimodal human actions (the Interpretation Mod-
ule), and to generate robot actions (the Execution Module).
In this section, we focus on the results and the evaluations.

A. Robot as the HEL

To evaluate the performance of our initial Multimodal
Interaction Manager, the framework was implemented on
Baxter Robot from Rethink Robotics. In this experiment,
Baxter participated as HEL and human participants acted
as ELD in the Find task. The human participant would give
instructions to Baxter to guide it through the find task while
Baxter robot would ask questions regarding the object and
its location.

In this experiment, the ELD (human) rarely performs H-O
actions. As a result, the Interpretation Module focuses only
on interpreting human speech and gestures; and this is com-
posed of three primary parts: a speech-to-text component,
a pointing gesture recognition component, and the Dialogue
Processing & Modality Fusion component for processing the
utterance and gesture together.

The HEL (Baxter) should perform pointing actions as well
as H-O actions. Baxter can also communicate to the ELD
through generated speech. Therefore, the Execution module
in this experiment performs H-O actions, pointing actions,
and speech; and is composed of multiple subcomponents:
pointing, H-O action, speech generation, and object recogni-
tion component that enables the robot to determine the object
and its location. The output of the Mediation Module is an
action vector defining the robot’s next move; each execution
component uses this vector to perform its respective action.

B. Robot as the ELD

To evaluate the feasibility of switching roles, we im-
plemented the MIM with the refined HBATN. In this ex-
periment, the NAO robot acted as the ELD and human
participants acted as HEL in the interaction. Utilizing a
different robot in this experiment confirms the fact that our
framework is platform-independent.

In this experiment, the HEL (human) performs H-O and
pointing actions as well as communications through speech.
As a result, our Interpretation Module has to interpret not
only the human’s speech and pointing gestures but also their
H-O actions. The Interpretation Module is composed of the
followings: pointing gesture recognition, H-O action recog-
nition, a speech-to-text component, an object recognition

component, and most importantly the Dialogue Processing
& Modality Fusion component. The last component performs
DA and subtask classification, combines the results creating
an input action vector, and transfers it to the Mediation
Module.

The ELD (NAO) only needs to perform pointing gestures
and speech. Thus, the Execution Module only takes care
of the pointing gesture and speech, and thus it contains
two components: pointing gesture execution and speech
generation.

V. USER STUDY AND EVALUATIONS

A. Experiment on Baxter

In a preliminary user study, seven participants were re-
cruited to interact with Baxter. Each subject performed 4
trials to find one of the four objects, giving a total of 28
trials of Find task. Baxter would help the participants locate
the object by talking and pointing. No script was provided
to the participants.

The evaluation has been done by reporting: 1) Average
length of the interactions as the mean duration and the mean
number of moves; 2) The percentage of successful trials,
(trials in which Baxter continued the interaction when the
object was already found are counted as failed trials); 3)
Non-understanding percentage of turns (throughout all trials)
where the Baxter’s interpretation of the human action can not
be found in HBATN and Baxter needs to ask the participant
to repeat their action; 4) The word error rate (WER) [18] and
serious speech recognition errors (SSREs) [4] for checking
the speech recognition component of the Interpretation Mod-
ule; 5) The percentage of wrong pointing gestures that were
either not recognized or not tagged with the correct intended
location for gesture recognition component; 6) The percent-
age of wrong classified DAs compared with the manually-
labeled DA tags; 7) Overall quality of the interaction by
asking the participants to rate their experience on a 5-point
Likert scale [4].

B. Experiment on NAO

In another preliminary user study, six participants were
recruited to interact with NAO. Each subject performed 5 to
6 trials with a total of 28 Find task trials. Participants would
help NAO find the object it had in mind from a specific
location.

Similar to the previous experiment, various metrics are
reported for the evaluation: 1) The percentage of successful
trials; 2) Non-understanding percentage of human turns
(throughout all trials) in two categories where NAO asks
the participant to repeat their action, and NAO fails to
answer the participant’s question or to follow their instruc-
tion; 3) The percentage of non-understandings in which
various components make mistakes, particularly if an action
is not accounted in the HBATN; 4) The speech-to-text (STT)
accuracy [16]; 5) The accuracy of DA classifier; 6) The
accuracy of H-O action recognition; 6) The Accuracy of
pointing gesture recognition; 7) The accuracy of subtask
classifier.



Avg. Avg. # Successful Non- Wrong SSRE & Wrong Wrong Avg. User
Duration Turns Trials Understandings WER SSREs Pointing Pointing DAs Rating
1m 45s 15.6 85.7% 11.7% 16.3% 23.4% 28.9% 1.2% 11.1% 4

TABLE I
PERFORMANCE RESULTS OF THE MIM ON THE Find TASK WITH BAXTER AS THE HEL. THE TABLE IS TAKEN FROM [4].

Avg. # Successful Non- STT DA H-O Pointing Subtask
Moves Trials Understandings Accuracy Accuracy Accuracy Accuracy Accuracy

19 84.8% 32.6% 84.8% 57% 83.1% 96% 49.3%

TABLE II
PERFORMANCE RESULTS OF THE MIM ON THE Find TASK WITH NAO AS THE ELD. THE TABLE IS TAKEN FROM [16].

DA Speech H-O Pointing Subtask DA & Subtask Model
Failure Failure Failure Failure Failure Failure Failure
55.5% 43.4% 22.2% 2% 92.9% 51.5% 14.1%

TABLE III
PERCENTAGE OF NON-UNDERSTANDINGS IN WHICH ERRORS IN EACH COMPONENT OCCUR. THE TABLE IS TAKEN FROM [16].

VI. DISCUSSION

For a detailed discussion of the results of the experiments,
the reader is referred to [4], [16]. The focus of this paper is
on how our evaluation methods could practically be utilized
in evaluating assistive robots.

One vital aspect of an interaction between a human and a
robot is the duration of the interaction (a type of usability).
As we pointed out before, one important application for
assistive robots is to help older adults. The longer one
interaction takes the more frustrated the human becomes.
It also could highly affect the efficiency of task completion
because if the older adult gets tired they are less interested
in engaging in the task. Based on our experiment, we can
declare that the average duration of the interactions is less
than the frustration threshold of humans. Moreover, the
average user Likert ratings of 4 out of 5 greatly supports our
argument. However, most of the subjects were young people,
and the ratings may decrease when more elderly subjects are
involved. Since our studies remain at a more theoretical level
and are not immediately relevant for applications in the real
world, evaluation with older adults remains part of our future
work.

An alternative aspect of usability is the overall success rate
of the interactions between humans and robots. Humans tend
to expect an assistive robot to act similarly to a human. Since
humans are extremely adept at completing interactions, they
expect similar performance from a robot. The success rates
reported in Tables I and II show that our proposed framework
achieves very good performance in this regard too.

Evaluating the components of a system can reveal many
hidden issues. Each sub-system is closely connected to its
adjacent components and it is likely that an error made by
one component dramatically affects the overall performance
of the robot and the success of the interaction. Evaluating
components thus provides important insight for the robotic
community by identifying possible failure points and es-
tablishing the relative importance of different components.

For instance, the detailed results of sub-component accu-
racy/ failure we reported in Tables I, II, and III explain
unsuccessful trials and non-understanding turns [4], [16]. In
particular, DA classifier accuracy of 57% contributes to a
non-understanding rate of 32.6% in the NAO experiment.

The discussion above raises the question of which is more
important: the theoretical framework itself or the implemen-
tation? Will a superior implementation of a mediocre frame-
work outperform a mediocre implementation of a superior
framework? Clearly, the theoretical framework needs to be
implemented on a real robot, or at least in a simulation,
to be evaluated. However, the limits on time and resources
frequently prevent researchers from spending sufficient effort
on implementation.

Finally, while evaluation in real-world applications is
clearly the ultimate test, it is becoming increasingly common
to evaluate assistive robots in simulations. How to properly
interpret the simulation results and reduce the cost of real-
world evaluation remains an important topic for future re-
search.

VII. CONCLUSION

In this work, we summarized our previous studies of
assistive robots capable of multimodal interaction and de-
scribed in detail the metrics used for their evaluation. These
metrics should be of general interest and we hope that our
insights can benefit other researchers in the area of assistive
robots. We provided the motivation for using various metrics
and showed that defining metrics tailored to evaluation of
different components of the overall system can help explain
its overall performance.
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